MVR COLLEGE OF ENGINEERING AND TECHNOLOGY

COMPUTER PROGRAMMING

UNIT II

C Programming conditional Statements

The if, if...else and nested if...else statement are used to make one-time decisions in C Programming, that is, to execute some code/s and ignore some code/s depending upon the test expression.

· if Statement
syntax is
if (test expression) {

 statement/s to be executed if test expression is true;

}

The if statement checks whether the text expression inside parenthesis () is true or not. If the test expression is true, statement/s inside the body of if statement is executed but if test is false, statement/s inside body of if is ignored.

Flowchart of if statement

[image: image1.png]Body of if

Statement just:
below if

)

Figure: Flowchart of if Statement

Example 1: C if statement

Write a C program to print the number entered by user only if the number entered is negative.

#include <stdio.h>

 int main(){

 int num;

 printf("Enter a number to check.\n");

 scanf("%d",&num);

 if(num<0) { /* checking whether number is less than 0 or not. */

 printf("Number = %d\n",num);

 }

/*If test condition is true, statement above will be executed, otherwise it will not be executed */

 printf("The if statement in C programming is easy.");

return 0;

}

Output 1

Enter a number to check.

-2

Number = -2

The if statement in C programming is easy.

When user enters -2 then, the test expression (num<0) becomes true. Hence, Number = -2 is displayed in the screen.

Output 2

Enter a number to check.

5

When the user enters 5 then, the test expression (num<0) becomes false. So, the statement/s inside body of if is skipped and only the statement below it is executed.

· if...else statement:
The if...else statement is used if the programmer wants to execute some statement/s when the test expression is true and execute some other statement/s if the test expression is false.

Syntax of if...else :

if (test expression) {

 statements to be executed if test expression is true;

}

else {

 statements to be executed if test expression is false;

}

Flowchart of if...else statement

[image: image2.png]Body of if Body of else

}7

Statement just
below if..else

!

Figure: Flowchart of if...else Statement

Example 2: C if...else statement

Write a C program to check whether a number entered by user is even or odd

#include <stdio.h>

int main(){

 int num;

 printf("Enter a number you want to check.\n");

 scanf("%d",&num);

 if((num%2)==0) //checking whether remainder is 0 or not.

 printf("%d is even.",num);

 else

 printf("%d is odd.",num);

 return 0;

}

Output 1

Enter a number you want to check.

25

25 is odd.

Output 2

Enter a number you want to check.

2

2 is even.

Nested if...else statement
(if...elseif....else Statement)

The nested if...else statement is used when program requires more than one test expression.

Syntax of nested if...else statement.

if (test expression1){

 statement/s to be executed if test expression1 is true;

 }

 else if(test expression2) {

 statement/s to be executed if test expression1 is false and 2 is true;

 }

 else if (test expression 3) {

 statement/s to be executed if text expression1 and 2 are false and 3 is true;

 }

 .

 .

 .

 else {

 statements to be executed if all test expressions are false;

 }

[image: image3.png]Statement-1

Statement-2

Condiion

statement

statementn

default

statement
v]

statement-x

A

How nested if...else works?

The nested if...else statement has more than one test expression. If the first test expression is true, it executes the code inside the braces{ } just below it. But if the first test expression is false, it checks the second test expression. If the second test expression is true, it executes the statement/s inside the braces{ } just below it. This process continues. If all the test expression are false, code/s inside else is executed and the control of program jumps below the nested if...else

The ANSI standard specifies that 15 levels of nesting may be continued.

Example 3: C nested if else statement

Write a C program to relate two integers entered by user using = or > or < sign.

#include <stdio.h>

int main(){

 int numb1, numb2;

 printf("Enter two integers to check\n");

 scanf("%d %d",&numb1,&numb2);

 if(numb1==numb2) //checking whether two integers are equal.

 printf("Result: %d = %d",numb1,numb2);

 else

 if(numb1>numb2) //checking whether numb1 is greater than numb2.

 printf("Result: %d > %d",numb1,numb2);

 else

 printf("Result: %d > %d",numb2,numb1);

return 0;

}

Output 1

Enter two integers to check.

5

3

Result: 5 > 3

Output 2

Enter two integers to check.

-4

-4

Result: -4 = -4

· Switch statement

Decision making are needed when, the program encounters the situation to choose a particular statement among many statements. If a programmer has to choose one block of statement among many alternatives, nested if...else can be used but, this makes programming logic complex. This type of problem can be handled in C programming using switch statement.

Syntax of switch...case
switch (n) {

case constant1:

 code/s to be executed if n equals to constant1;

 break;

case constant2:

 code/s to be executed if n equals to constant2;

 break;

 .

 .

default:

 code/s to be executed if n doesn't match to any cases;

}

The value of n is either an integer or a character in above syntax. If the value of n matches constant in case, the relevant codes are executed and control moves out of the switch statement. If the ndoesn't matches any of the constant in case, then the default codes are executed and control moves out of switch statement.

[image: image4.jpg]1s switch
expression =case
constant1?

True

Is switch

True

expression =case s
. constant2?

No match

statements for|
first case

statements for

second case

default
statements

Next statement/s

[
v

Example of switch...case statement
Write a program that asks user an arithmetic operator('+','-','*' or '/') and two operands and perform the corresponding calculation on the operands.
/* C program to demonstrate the working of switch...case statement */
/* C Program to create a simple calculator for addition, subtraction,

 multiplication and division */
include <stdio.h>
int main() {
 char o;
 float num1,num2;
 printf("Select an operator either + or - or * or / \n");
 scanf("%c",&o);
 printf("Enter two operands: ");
 scanf("%f%f",&num1,&num2);
 switch(o) {
 case '+':
 printf("%.1f + %.1f = %.1f",num1, num2, num1+num2);
 break;
 case '-':
 printf("%.1f - %.1f = %.1f",num1, num2, num1-num2);
 break;
 case '*':
 printf("%.1f * %.1f = %.1f",num1, num2, num1*num2);
 break;
 case '/':
 printf("%.1f / %.1f = %.1f",num1, num2, num1/num2);
 break;
 default:
 /* If operator is other than +, -, * or /, error message is shown */
 printf("Error! operator is not correct");
 break;
 }
 return 0;
}
Output
Enter operator either + or - or * or /

*

Enter two operands: 2.3

4.5

2.3 * 4.5 = 10.3
The break statement at the end of each case cause switch statement to exit. If break statement is not used, all statements below that case statement are also executed

C Programming Loops

Loops cause program to execute the certain block of code repeatedly until test condition is false. Loops are used in performing repetitive task in programming. Consider these scenarios:

· we want to execute some code/s 100 times.

· We want to execute some code/s certain number of times depending upon input from user.

These types of task can be solved in programming using loops.

There are 3 types of loops in C programming:

1. for loop

2. while loop
3. do...while loop
for Loop Syntax

for(initialization statement; test expression; update statement) {

 code/s to be executed;

}

How for loop works in C programming?

The initialization statement is executed only once at the beginning of the for loop. Then the test expression is checked by the program. If the test expression is false, for loop is terminated. But if test expression is true then the code/s inside body of for loop is executed and then update expression is updated. This process repeats until test expression is false.

This flowchart describes the working of for loop in C programming.

[image: image5.jpg]Initilization

statement
Update
B statement |
Body of for
Loop

False

(Exit for Loop)

Statement just
below for Loop

v

Figure: Flowchart of for Loop

for loop example

Write a program to find the sum of first n natural numbers where n is entered by user. Note: 1,2,3... are called natural numbers.
#include <stdio.h>

int main(){

 int n, count, sum=0;

 printf("Enter the value of n.\n");

 scanf("%d",&n);

 for(count=1;count<=n;++count) //for loop terminates if count>n

 {

 sum+=count; /* this statement is equivalent to sum=sum+count */

 }

 printf("Sum=%d",sum);

 return 0;

}

Output
Enter the value of n.

19

Sum=190

In this program, the user is asked to enter the value of n. Suppose you entered 19 then, count is initialized to 1 at first. Then, the test expression in the for loop,i.e., (count<= n) becomes true. So, the code in the body of for loop is executed which makes sum to 1. Then, the expression ++count is executed and again the test expression is checked, which becomes true. Again, the body of for loop is executed which makes sum to 3 and this process continues. When count is 20, the test condition becomes false and the for loop is terminated.
While loop

Loops cause program to execute the certain block of code repeatedly until test condition is false. Loops are used in performing repetitive task in programming.

Syntax of while loop:

while (test expression) {

 statement/s to be executed.

}

The while loop checks whether the test expression is true or not. If it is true, code/s inside the body of while loop is executed,that is, code/s inside the braces { } are executed. Then again the test expression is checked whether test expression is true or not. This process continues until the test expression becomes false.

[image: image6.jpg]<~ Test ~_False
. Expression _—

Exit while loop
. o4

True

Body of while loop

Example of while loop

Write a C program to find the factorial of a number, where the number is entered by user. (Hints: factorial of n = 1*2*3*...*n
/*C program to demonstrate the working of while loop*/
#include <stdio.h>

 int main(){

 int number,factorial;
 printf("Enter a number.\n");
 scanf("%d",&number);
 factorial=1;
 while (number>0){ /* while loop continues util test condition number>0 is true */
 factorial=factorial*number;
 --number;
}
printf("Factorial=%d",factorial);
return 0;
}
Output
Enter a number.

5

Factorial=120

do...while loop

In C, do...while loop is very similar to while loop. Only difference between these two loops is that, in while loops, test expression is checked at first but, in do...while loop code is executed at first then the condition is checked. So, the code are executed at least once in do...while loops.

Syntax of do...while loops

do {

 some code/s;

}

while (test expression);

At first codes inside body of do is executed. Then, the test expression is checked. If it is true, code/s inside body of do are executed again and the process continues until test expression becomes false(zero).

Notice, there is semicolon in the end of while (); in do...while loop.

[image: image7.jpg]Body of loop
7 Test . False /"~ ‘
" expremsion (it white 1oop

True

Figure: Flowchart of do...while loop

Example of do...while loop

Write a C program to add all the numbers entered by a user until user enters 0.
/*C program to demonstrate the working of do...while statement*/
#include <stdio.h>
int main(){
 int sum=0,num;
 do /* Codes inside the body of do...while loops are at least executed once. */
 {

 printf("Enter a number\n");
 scanf("%d",&num);
 sum+=num;

 }
 while(num!=0);
 printf("sum=%d",sum);
return 0;
}
Output
Enter a number

3

Enter a number

-2

Enter a number

0

sum=1

In this C program, user is asked a number and it is added with sum. Then, only the test condition in the do...while loop is checked. If the test condition is true,i.e, num is not equal to 0, the body of do...while loop is again executed until num equals to zero

ARRAYS
Arrays- concepts
In C programming, one of the frequently arising problems is to handle similar types of data. For example: If the user wants to store marks of 100 students. This can be done by creating 100 variables individually but, this process is rather tedious and impracticable. These type of problem can be handled in C programming using arrays.

An array is a sequence of data item of homogeneous value(same type).

Arrays are of two types:

1. One-dimensional arrays

2. Multidimensional arrays(will be discussed in next chapter)

Declaration of one-dimensional array

data_type array_name[array_size];

For example:

int age[5];

Here, the name of array is age. The size of array is 5,i.e., there are 5 items(elements) of array age. All element in an array are of the same type (int, in this case).

Array elements

Size of array defines the number of elements in an array. Each element of array can be accessed and used by user according to the need of program. For example:

int age[5];

[image: image8.jpg]’ige[nl age[1] age[2] age[3] age[4]

i

Note that, the first element is numbered 0 and so on.

Here, the size of array age is 5 times the size of int because there are 5 elements.

Suppose, the starting address of age[0] is 2120d and the size of int be 4 bytes. Then, the next address (address of a[1]) will be 2124d, address of a[2] will be 2128d and so on.

Initialization of one-dimensional array:

Arrays can be initialized at declaration time in this source code as:

int age[5]={2,4,34,3,4};

It is not necessary to define the size of arrays during initialization.

int age[]={2,4,34,3,4};

In this case, the compiler determines the size of array by calculating the number of elements of an array.

[image: image9.jpg]age[0] age[1] age[2] age[3] age[4]
BN

Initialization of one-dimensional array

Accessing array elements

In C programming, arrays can be accessed and treated like variables in C.

For example:

scanf("%d",&age[2]);

/* statement to insert value in the third element of array age[]. */

scanf("%d",&age[i]);

/* Statement to insert value in (i+1)th element of array age[]. */

/* Because, the first element of array is age[0], second is age[1], ith is age[i-1] and (i+1)th is age[i]. */

printf("%d",age[0]);

/* statement to print first element of an array. */

printf("%d",age[i]);

/* statement to print (i+1)th element of an array. */

Example of array in C programming

/* C program to find the sum marks of n students using arrays */
#include <stdio.h>
int main(){
 int marks[10],i,n,sum=0;
 printf("Enter number of students: ");
 scanf("%d",&n);
 for(i=0;i<n;++i){
 printf("Enter marks of student%d: ",i+1);
 scanf("%d",&marks[i]);
 sum+=marks[i];
 }
 printf("Sum= %d",sum);
return 0;
}
Output
Enter number of students: 3

Enter marks of student1: 12

Enter marks of student2: 31

Enter marks of student3: 2

sum=45

Important thing to remember in C arrays

Suppose, you declared the array of 10 students. For example: arr[10]. You can use array members from arr[0] to arr[9]. But, what if you want to use element arr[10], arr[13] etc. Compiler may not show error using these elements but, may cause fatal error during program execution.

C Programming Multidimensional Arrays

C programming language allows programmer to create arrays of arrays known as multidimensional arrays. For example:

float a[2][6];

Here, a is an array of two dimension, which is an example of multidimensional array.

For better understanding of multidimensional arrays, array elements of above example can be thinked of as below:

[image: image10.jpg]col1

col2 | col3 | cola

col5 | col6

row 1

a[0][0] |a[0][1] |a[0][2] |a[0](3]

{0141 | afo1(5]

row2

a[11(0] |a[1][1] |al1](2] |a[1][3]

11041 | af11(5]

R I N

Working of multidimensional arrays in c programming

Initialization of Multidimensional Arrays

In C, multidimensional arrays can be initialized in different number of ways.

int c[2][3]={{1,3,0}, {-1,5,9}};

 OR

int c[][3]={{1,3,0}, {-1,5,9}};

 OR

int c[2][3]={1,3,0,-1,5,9};

Initialization Of three-dimensional Array

double cprogram[3][2][4]={

{{-0.1, 0.22, 0.3, 4.3}, {2.3, 4.7, -0.9, 2}},

 {{0.9, 3.6, 4.5, 4}, {1.2, 2.4, 0.22, -1}},

 {{8.2, 3.12, 34.2, 0.1}, {2.1, 3.2, 4.3, -2.0}}

};

Suppose there is a multidimensional array arr[i][j][k][m]. Then this array can hold i*j*k*m numbers of data.

Similarly, the array of any dimension can be initialized in C programming.

Example of Multidimensional Array In C

Write a C program to find sum of two matrix of order 2*2 using multidimensional arrays where, elements of matrix are entered by user.

#include <stdio.h>

int main(){

 float a[2][2], b[2][2], c[2][2];

 int i,j;

 printf("Enter the elements of 1st matrix\n");

/* Reading two dimensional Array with the help of two for loop. If there was an array of 'n' dimension, 'n' numbers of loops are needed for inserting data to array.*/

 for(i=0;i<2;++i)

 for(j=0;j<2;++j){

 printf("Enter a%d%d: ",i+1,j+1);

 scanf("%f",&a[i][j]);

 }

 printf("Enter the elements of 2nd matrix\n");

 for(i=0;i<2;++i)

 for(j=0;j<2;++j){

 printf("Enter b%d%d: ",i+1,j+1);

 scanf("%f",&b[i][j]);

 }

 for(i=0;i<2;++i)

 for(j=0;j<2;++j){

/* Writing the elements of multidimensional array using loop. */

 c[i][j]=a[i][j]+b[i][j]; /* Sum of corresponding elements of two arrays. */

 }

 printf("\nSum Of Matrix:");

 for(i=0;i<2;++i)

 for(j=0;j<2;++j){

 printf("%.1f\t",c[i][j]);

 if(j==1) /* To display matrix sum in order. */

 printf("\n");

 }

return 0;

}

Ouput

Enter the elements of 1st matrix

Enter a11: 2;

Enter a12: 0.5;

Enter a21: -1.1;

Enter a22: 2;

Enter the elements of 2nd matrix

Enter b11: 0.2;

Enter b12: 0;

Enter b21: 0.23;

Enter b22: 23;

Sum Of Matrix:

2.2 0.5

-0.9 25.0
C Programming Arrays and Functions

In C programming, a single array element or an entire array can be passed to a function. Also, both one-dimensional and multi-dimensional array can be passed to function as argument.

Passing One-dimensional Array In Function

C program to pass a single element of an array to function

#include <stdio.h>

void display(int a)

 {

 printf("%d",a);

 }

int main(){

 int c[]={2,3,4};

 display(c[2]); //Passing array element c[2] only.

 return 0;

}

Output

4

Single element of an array can be passed in similar manner as passing variable to a function.

Passing entire one-dimensional array to a function

While passing arrays to the argument, the name of the array is passed as an argument(,i.e, starting address of memory area is passed as argument).

Write a C program to pass an array containing age of person to a function. This function should find average age and display the average age in main function.

#include <stdio.h>

float average(float a[]);

int main(){

 float avg, c[]={23.4, 55, 22.6, 3, 40.5, 18};

 avg=average(c); /* Only name of array is passed as argument. */

 printf("Average age=%.2f",avg);

 return 0;

 }

float average(float a[]){

 int i;

 float avg, sum=0.0;

 for(i=0;i<6;++i){

 sum+=a[i];

 }

 avg =(sum/6);

 return avg;

}

Output

Average age=27.08

Passing Multi-dimensional Arrays to Function

To pass two-dimensional array to a function as an argument, starting address of memory area reserved is passed as in one dimensional array

Example to pass two-dimensional arrays to function

#include

void Function(int c[2][2]);

int main(){

 int c[2][2],i,j;

 printf("Enter 4 numbers:\n");

 for(i=0;i<2;++i)

 for(j=0;j<2;++j){

 scanf("%d",&c[i][j]);

 }

 Function(c); /* passing multi-dimensional array to function */

 return 0;

}

void Function(int c[2][2]){

/* Instead to above line, void Function(int c[][2]){ is also valid */

 int i,j;

 printf("Displaying:\n");

 for(i=0;i<2;++i)

 for(j=0;j<2;++j)

 printf("%d\n",c[i][j]);

}

Output

Enter 4 numbers:

2

3

4

5

Displaying:

2

3

4

5

C Programming String

In C programming, array of character are called strings. A string is terminated by null character /0. For example:

"c string tutorial"

Here, "c string tutorial" is a string. When, compiler encounters strings, it appends null character at the end of string.

[image: image11.jpg]

Memory diagram of strings in C programming

Declaration of strings

Strings are declared in C in similar manner as arrays. Only difference is that, strings are of char type.

char s[5];

Declaration of strings in C language

Strings can also be declared using pointer.

char *p

Initialization of strings

In C, string can be initialized in different number of ways.

char c[]="abcd";

OR,

char c[5]="abcd";

OR,

char c[]={'a','b','c','d','\0'};

OR;

char c[5]={'a','b','c','d','\0'};

Initialization of strings in C programming.String can also be initialized using pointers

char *c="abcd";

Reading Strings from user.

Reading words from user.

char c[20];

scanf("%s",c);

String variable c can only take a word. It is beacause when white space is encountered, the scanf() function terminates.

Write a C program to illustrate how to read string from terminal.

#include <stdio.h>

int main(){

 char name[20];

 printf("Enter name: ");

 scanf("%s",name);

 printf("Your name is %s.",name);

 return 0;

}

Output

Enter name: Dennis Ritchie

Your name is Dennis.

Here, program will ignore Ritchie because, scanf() function takes only string before the white space.

Reading a line of text

C program to read line of text manually.

#include <stdio.h>

int main(){

 char name[30],ch;

 int i=0;

 printf("Enter name: ");

 while(ch!='\n') // terminates if user hit enter

 {

 ch=getchar();

 name[i]=ch;

 i++;

 }

 name[i]='\0'; // inserting null character at end

 printf("Name: %s",name);

 return 0;

}

This process to take string is tedious. There are predefined functions gets() and puts in C language to read and display string respectively.

int main(){

 char name[30];

 printf("Enter name: ");

 gets(name); //Function to read string from user.

 printf("Name: ");

 puts(name); //Function to display string.

 return 0;

}

Both, the above program has same output below:

Output

Enter name: Tom Hanks

Name: Tom Hanks

Passing Strings to Functions

String can be passed to function in similar manner as arrays as, string is also an array.
#include <stdio.h>

void Display(char ch[]);

int main(){

 char c[50];

 printf("Enter string: ");

 gets(c);

 Display(c); // Passing string c to function.

 return 0;

}

void Display(char ch[]){

 printf("String Output: ");

 puts(ch);

}

Here, string c is passed from main() function to user-defined function Display(). In function declaration, ch[] is the formal argument.

String handling functions

You can perform different type of string operations manually like: finding length of string, concatenating(joining) two strings etc. But, for programmers ease, many library function are defined under header file <string.h> to handle these commonly used talk in C programming

Strings are often needed to be manipulated by programmer according to the need of a problem. All string manipulation can be done manually by the programmer but, this makes programming complex and large. To solve this, the C supports a large number of string handling functions.

There are numerous functions defined in "string.h" header file. Few commonly used string handling functions are discussed below:

Function
Work of Function

strlen()
Calculates the length of string

strcpy()
Copies a string to another string

strcat()
Concatenates(joins) two strings

strcmp()
Compares two string

strlwr()
Converts string to lowercase

strupr()
Converts string to uppercase

Strings handling functions are defined under "string.h" header file, i.e, you have to include the code below to run string handling functions.

#include <string.h>

gets() and puts()

Functions gets() and puts() are two string functions to take string input from user and display string respectively as mentioned in previous chapter.

#include<stdio.h>

int main(){

 char name[30];

 printf("Enter name: ");

 gets(name); //Function to read string from user.

 printf("Name: ");

 puts(name); //Function to display string.

 return 0;

}

Though, gets() and puts() function handle string, both these functions are defined in "stdio.h" header file.
int strcmp(char *string1, char *string2);

Description: The strcmp function compares the contents of string1 and string2 and returns a value indicating their relationship.

Return Value

if Return value if < 0 then it indicates string1 is less than string2

if Return value if > 0 then it indicates string2 is less than string1

if Return value if = 0 then it indicates string1 is equal to string2

Example:

#include <stdio.h>

int main() {

 char string1[20];

 char string2[20];

 strcpy(string1, "Hello");

 strcpy(string2, "Hellooo");

 printf("Return Value is : %d\n", strcmp(string1, string2));

 strcpy(string1, "Helloooo");

 strcpy(string2, "Hellooo");

 printf("Return Value is : %d\n", strcmp(string1, string2));

 strcpy(string1, "Hellooo");

 strcpy(string2, "Hellooo");

 printf("Return Value is : %d\n", strcmp(string1, string2));

 return 0;

}

It will produce following result:

Return Value is : -111

Return Value is : 111

Return Value is : 0

Write a program to append one string s2 to another string s1 i.e. concatenation of two strings. (Without using strcat function)

--

#include<stdio.h>

#include<conio.h>

void main()

{

 char a[50],b[50];

 int i,j,n,k;

 clrscr();

 printf("\n Please Give The STRING OF A : ");

 scanf("%s",a);

 printf("\n Please Give The STRING OF B : ");

 scanf("%s",b);

 for(i=0,k=0;a[i]!='\0';i++)

 k++;

 for(j=0,n=0;b[j]!='\0';j++)

 n++;

 printf("VALUE OF K=%d",k);

 printf("VALUE OF N=%d",n);

 for(i=k,j=0;i<=n+k;i++,j++)

 a[i]=b[j];

 printf("\n THE Concatenated string is %s .",a);

 getch();

}

--------------------------------- OUTPUT ---------------------------------

 Please Give The STRING OF A : mvr

 Please Give The STRING OF B : college

VALUE OF K= 3 VALUE OF N= 7

 THE Concatenated string is mvrcollege.

Code for Program to copy one string s2 to another string s1 using strcopy function from string.h in C Programming

#include<stdio.h>

#include<conio.h>

#include<string.h>

void main()

{

 char a[50],b[50];

 int i,j,n,k;

 clrscr();

 printf("\n Please Give The STRING OF A : ");

 scanf("%s",a);

 printf("\n Please Give The STRING OF B : ");

 scanf("%s",b);

 strcpy(a,b);

 printf("\n AFTER COPYING STRING OF B INTO A IS %s.",a);

 getch();

}

--------------------------------- OUTPUT ---------------------------------

 Please Give The STRING OF A : NAYAN

 Please Give The STRING OF B : SHAH

 AFTER COPYING STRING OF B INTO A IS SHAH.

Code for Program to copy one string s2 to another string s1 without using strcpy function in C Programming.
#include<stdio.h>

#include<conio.h>

void main()

{

 char a[50],b[50];

 int i,j,n,k;

 clrscr();

 printf("\n Please Give The STRING OF A : ");

 scanf("%s",a);

 printf("\n Please Give The STRING OF B : ");

 scanf("%s",b);

 for(i=0;b[i]!='\0';i++)

 a[i]=b[i];

 a[i]='\0';

 printf("\n AFTER COPYING STRING OF B INTO A IS %s .",a);

 getch();

}

--------------------------------- OUTPUT ---------------------------------

 Please Give The STRING OF A : SHAH

 Please Give The STRING OF B : NAYAN

 AFTER COPYING STRING OF B INTO A IS NAYAN

\

Why getch() is used for?

 Most of the c program end with this statement. So most of the people thought that this program is used to get output on the screen. But it is wrong This statement is used to read a single character from console without an echo to screen.. let see how it is....

Through a program
#include<stdio.h>
main()
{
 printf("Hello friend");
}
 When you run this program using turbo c++ compiler we cannot see the output. Actually the out put was already printed on the screen , at the printing time itself the run window will close. When you go to the user screen (window --> user screen) , you can always see what the last status of program running. Here getch() hepls to the user for waiting to enter a character from keyboard ..

Just go through another program.
#include<stdio.h>
main()
{
 char name[20];
 printf("Hello friend, What is your name?\n");
 scanf("%s",&name);
 printf("Hello %s Welcome to c programming",name);
}

 In this program also I not use getch() . When we run the program We can see like this

Hello friend, What is your name?
Athil
 Here we cannot see the last statement while running. But the last statement is already printed on the screen. After printing the run window will close without any response(Entering any character) of the user. After running the program just just go to the user screen. there we can see the last statement.

Hello Athil Welcome to c programming.
 I hope that most of them understand what the use of getch() . If not then go through the bellow program

#include<stdio.h>
#include<conio.h>
main()
{
 clrscr();
 int a,b;
 printf("Enter any two numbers\n");
 scanf("%d%d",&a,&b);
 printf("Please press any key to view out out\n");
 getch();
 clrscr();
 printf("The sum of the numbers you entered is %d",a+b);
 getch();
 getch();
}
